

Regional Biosecurity Workshop

May 28, 2007

Edison Liu liue@gis.a-star.edu.sg +65-6478-8007

How might we deal with bioterrorist threats?

- Block access to dangerous agents
- Detect trafficking
- Detect outbreak
- Trace to source

Category A

- Bacillus anthracis (anthrax)
- Clostridium botulinum toxin (botulism)
- Yersinia pestis (plague)
- Variola major (smallpox) and other related pox viruses
- Francisella tularensis (tularemia)
- Viral hemorrhagic fevers
 - Arenaviruses
 - LCM, Junin virus, Machupo virus, Guanarito virus
 - Lassa Fever
 - Bunyaviruses
 - Hantaviruses
 - Rift Valley Fever
 - Flaviruses
 - Dengue
 - Filoviruses
 - Ebola
 - Marburg

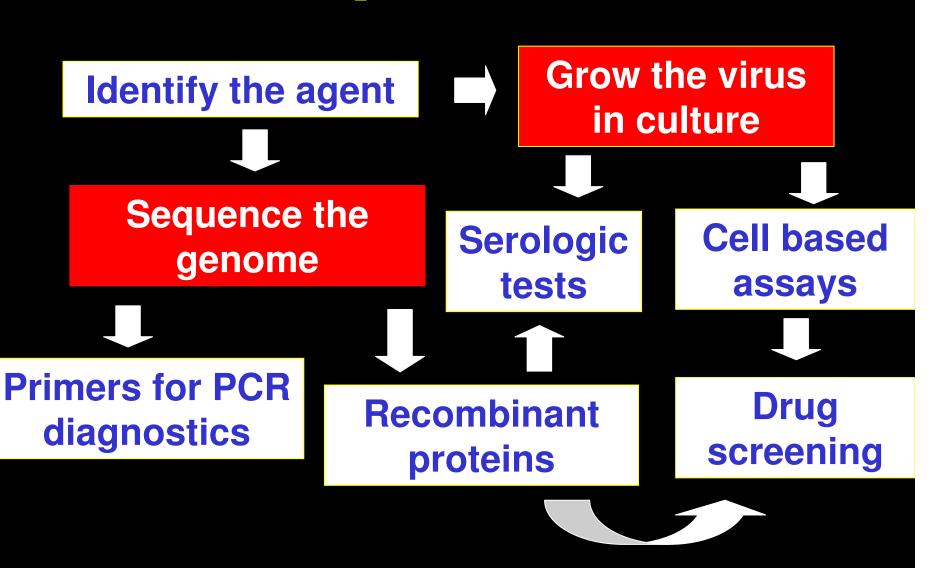
Category B

- Burkholderia pseudomallei
- Coxiella burnetii (Q fever)
- Brucella species (brucellosis)
- Burkholderia mallei (glanders)
- Chlamydia psittaci (Psittacosis)*
- Ricin toxin (from Ricinus communis)
- Epsilon toxin of Clostridium perfringens
- Staphylococcus enterotoxin B
- Typhus fever (Rickettsia prowazekii)
- Food and Waterborne Pathogens
 - Bacteria
 - Diarrheagenic E.coli
 - Pathogenic Vibrios
 - Shigella species
 - Salmonella
 - · Listeria monocytogenes
 - Campylobacter jejuni
 - · Yersinia enterocolitica)

ruses (Caliciviruses, Hepatitis A)

- Cryptosporidium parvum
- Cyclospora cayatanensis
- Giardia lamblia
- Entamoeba histolytica
- Toxoplasma
- Microsporidia

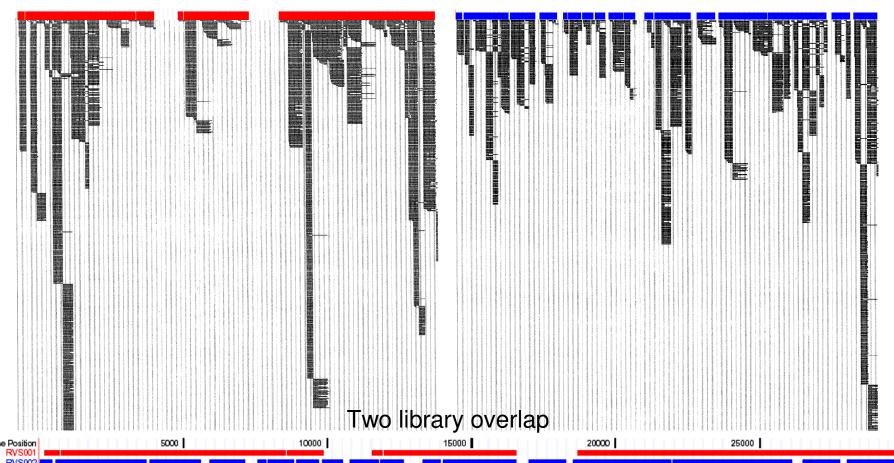
- Additional viral encephalitides
- West Nile Virus
- LaCrosse
- California encephalitis
- VEE
- EEE
- WEE
- Japanese Encephalitis Virus otozoa
- Kyasanur Forest Virus


With only a few exceptions, candidate bioterrorism agents look like standard infectious disease agents

How did we deal with a serious infectious threat?

- Organization
- Technologies
- Communications

Singapore Battle Plan: SARS CoV April 2, 2003

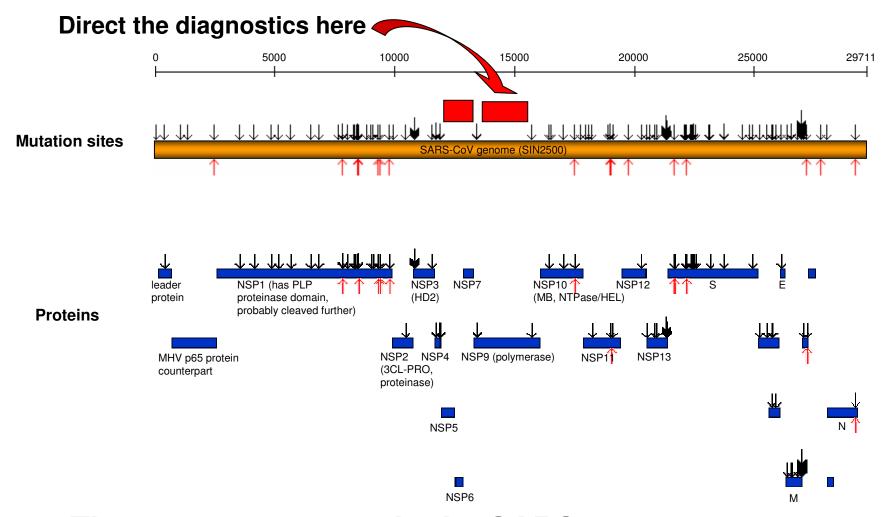

Viral Genome Discovery

SARS-Cov genome coverage by shotgun libraries

Taq I library (2000 reads)

Csp6l library (2000 reads)

There is no distinction between good research and essential public health measures


MECHANISMS OF BUREASE

Mechanisms of disease

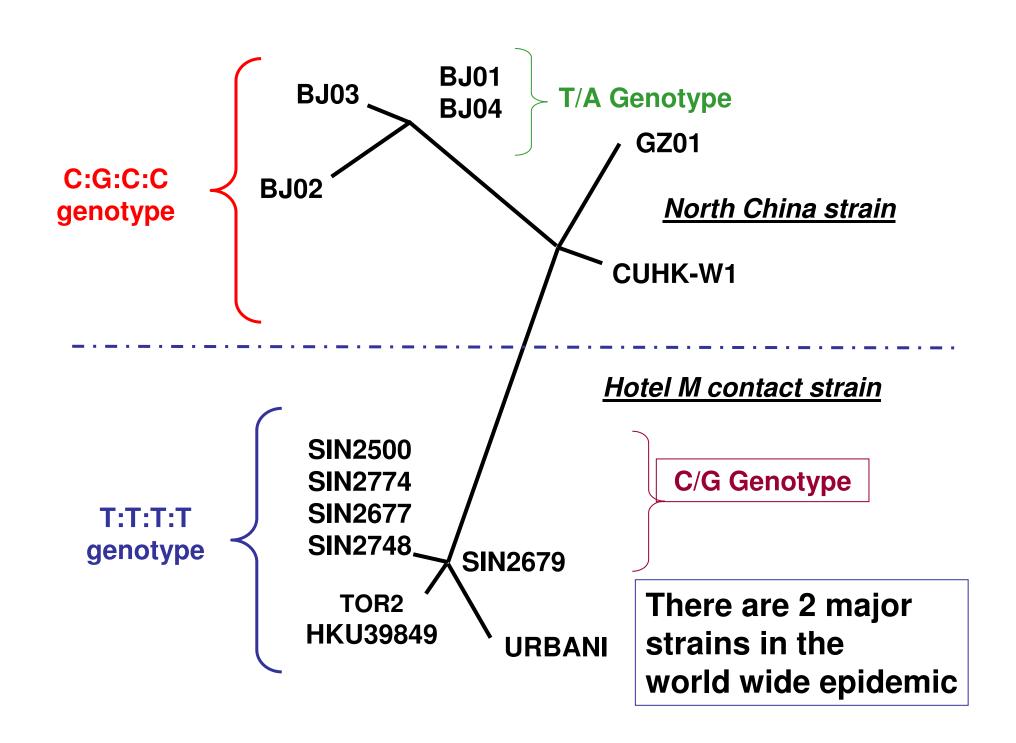
☼ @ Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection

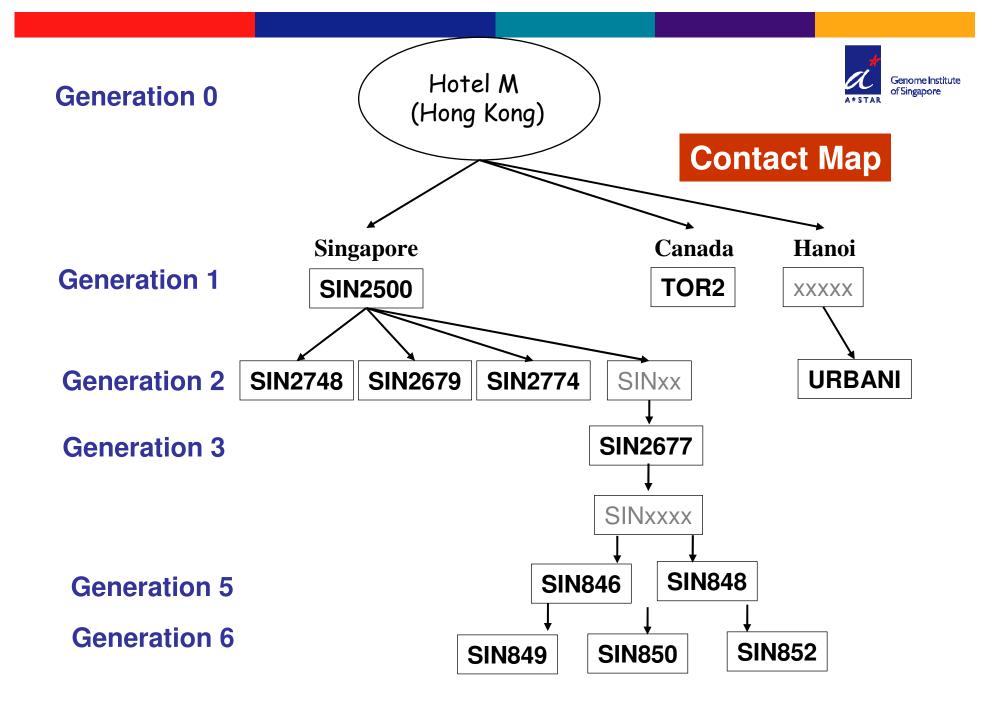
YiJun Ruan, Chia Lin Wei, Ling Ai Ee, Vinsensius B Vega, Herve Thoreau, Se Thoe Su Yun, Jar-Ming Chia, Patrick Ng. Kuo Ping Chiu, Landri Lim, Zhang Tao, Chan Kwai Peng, Lynette Oon Lin Ean, Ng Mah Lee, Leo Yee Sin, Lisa F P Ng. Ren Ee Chee, Lawrence W Stanton, Philip M Long, Edison T Liu

Lancet. May 24;361(9371):1779-85, 2003

There are 129 places in the SARS genome different amongst the 14 SARS isolates.

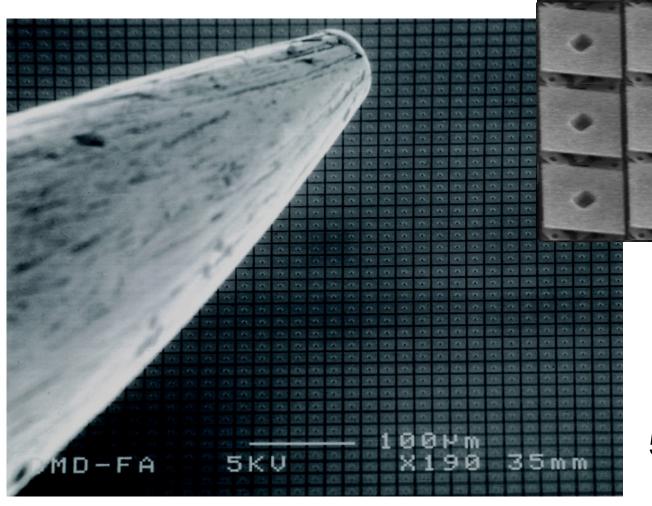
Want diagnostics that will work on all isolates.


Detection of SARS CoV in blood of infected patients


Lisa F. P. Ng¹, Michelle Wong², Susie Koh², Ooi Eng Eong³, Tang Kin Fai³, Leong Hoe Nam⁵, Ling Ai Ee⁴, Lora V. Agathe¹, Jenny Tan¹, Edison T. Liu¹, Ren Ee Chee^{1,6}, Ng Lee Ching² and Martin L. Hibberd¹*

- Genome Institute of Singapore, Singapore (Lisa F.P. Ng PhD, Lora V, Agathe, Jenny Tan, Edison T. Liu MD, Ren Ee Chee PhD, Martin L. Hibberd PhD);
- 2. DSO National Laboratories, Singapore (Michelle Wong, Susie Koh, Ng Lee Ching PhD);
- 3. Environmental Health Institute, National Environment Agency, Singapore (Ooi Eng Eong PhD, Tang Kin Fai PhD);
- 4. Department of Pathology, Singapore General Hospital, Singapore (Ling Ai Ee MD);
- 5. Tan Tock Seng Hospital, Singapore (Leong Hoe Nam MBBS);
- 6. Department of Microbiology, National University of Singapore (Ren Ee Chee PhD)

*Correspondence to: Dr Martin L. Hibberd, Genome Institute of Singapore, 1 Science Park Road, #05-01, Singapore 117528 (email: gismlh@nus.edu.sg)



Assignment of SARS CoV strains assists in contact mapping and contagion monitoring

Need: to develop a fast and inexpensive genotyping approach

385,000 probes to sequence the SARS genome

1 tech can process
50 samples in 5 days
\$500 per sample
vs
5 techs at 10 samples
in 5 days

Sequencing by Hybridization

Ţ

- ..TTTGGGAAGAGTCCCCCAACCGACATTCGGACAACCCTGTAGGCCGCATGGTCACCC..
 - ..AAACCCTTCTCTC^AGGGGGTTGGCTGTA.
 - TTTGGGAAGAGAACCCCAACCGACAT
- - ..AAACCCTTCTCTC^AGGGGGTTGGCTGTA..

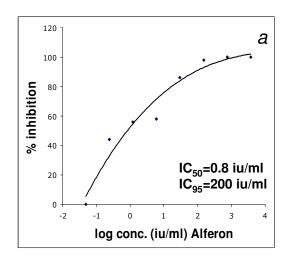
PM

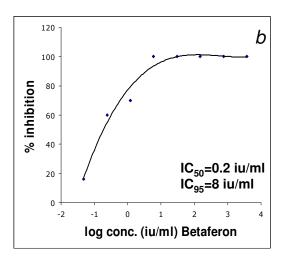
Lab-acquired SARS case

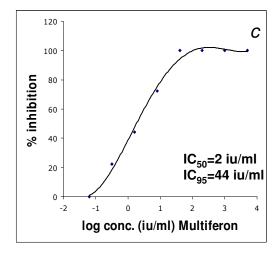
- A 27 year old graduate student tested positive for SARS in September 2003
- No known contacts with SARS patients or travel to active SARS areas
- Student worked on West Nile Virus in BSL3 lab that works with SARS-CoV
- GIS sequenced the virus directly from patient sample using array-based method

Contact tracing of a field sample

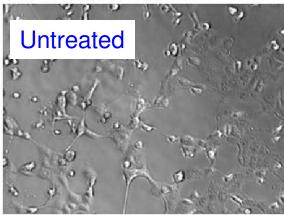
		Position of Varriant Nucleotide (Urbani coordinates)													
Strain	Origin	9404	9854	17564	18965	19084	19838	21721	22222	22549	23174	23735	23792	28268	Del 47°
Urhani	Vietnam	Т	С	Т	Т	С	Α	G	Т	С	С	Α	С	С	Nο
Sin0409	Singapore	Т	С	Т	Α	Т	Α	G	T	С	С	Α	Т	Т	Yes
SinWNV	Singapore	Т	С	Т	Α	Т	Α	G	Т	С	С	Α	Т	Т	Yes
Sin2774	Singapore	Т	С	Т	Α	Т	Α	G	Т	С	С	Α	Т	Т	No
Sin2748	Singapore	Т	С	Т	Т	Т	Α	G	Т	С	С	Α	С	С	No
Sin2500	Singapore	Т	С	Т	Т	Т	Α	G	Т	С	С	Α	С	С	No
Sin2677	Singapore	Т	С	Т	Т	Т	Α	G	Т	С	С	Α	С	С	No
Sin2679	Singapore	Т	С	Т	Т	С	Α	G	Т	С	Т	Α	С	С	No
Sin849	Singapore	Т	С	Т	Т	С	Α	G	Т	Т	Т	G	С	С	No
Sin850	Singapore	Т	С	Т	Т	С	Α	G	Т	Т	Т	G	С	С	No
Sin842	Singapore	Т	С	Т	Т	С	Α	G	Т	Т	Т	G	С	С	No
Sin847	Singapore	Т	С	Т	Т	С	Α	G	Т	Т	Т	G	С	С	No
Sin852	Singapore	Т	С	Т	Т	С	Α	G	Т	Т	Т	G	С	С	No
Sin848	Singapore	Т	С	Т	Т	С	Α	G	Т	Т	Т	G	С	С	No
Sin3765	Singapore	Т	С	Т	Т	С	Α	G	Т	Т	Т	G	С	С	No
Sin845	Singapore	Т	С	Т	Т	С	Α	G	Т	Т	Т	G	С	С	No
Sin3725	Singapore	Т	С	Т	Т	С	Α	G	Т	Т	Т	G	С	С	No
Sin3408	Singapore	Т	С	Т	Т	С	Α	G	Т	Т	Т	G	С	С	No
Sin3408L	Singapore	Т	С	Т	Т	С	Α	G	Т	Т	Т	G	С	С	No
Sin846	Singapore	Т	С	Т	Т	С	Α	G	Т	T	Т	G	С	С	No


Towards a Treatment for SARS:


Identify effective drugs


Vero cell assay



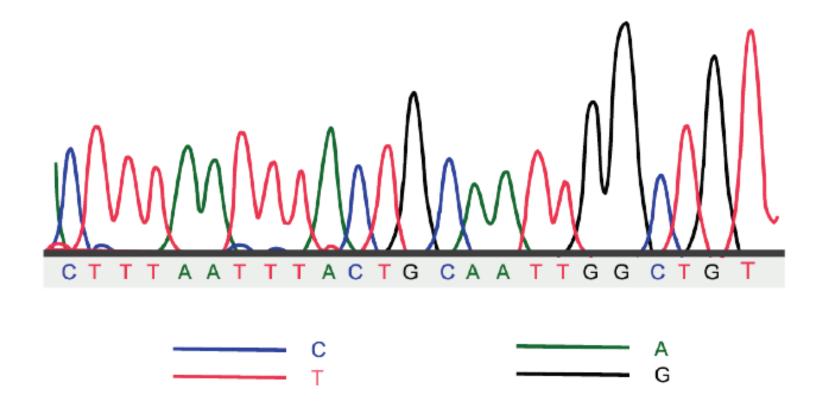

Interferons inhibit SARS in plaque assay

SARS-infected Vero cells

Antiviral	Source	Highest concentration tested	Inhibition of cytopathic effect	
Interferons	-	•	•	
Interferon α2a (Roferon®)	Roche	100,000 iu/ml	No	
Interferon α2b (Intron A®)	Schering Plough	500,000 iu/ml	No	
Interferon αn1 (Wellferon®)	Glaxosmithkline	500,000 iu/ml	Yes	
Interferon αn3 (Alferon®)	Hemispheryx	10,000 iu/ml	Yes	
Interferon β1a (Rebif®)	Serono	500,000 iu/ml	No	
Interferon β1b (Betaferon®)	Schering AG	100,000 iu/ml	Yes	
Nucleoside analogs	•	•	•	
Acyclovir	Faulding	1000 μg/ml	No	
Amantadine (Symmetrel®)	Novartis	1000 μg/ml	No	
Cymevene (Ganciclovir)	Roche	50,000 μg/ml	No	
Foscarnet (Foscavir®)	Astrazeneca	8000 μΜ	No	
Ribavirin	ICN Pharma	10,000 μg/ml	Yes**	

Applying this model to Dengue

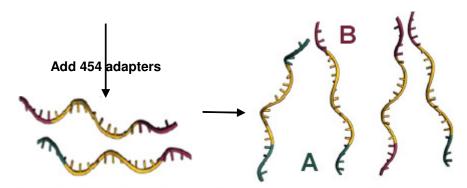
MOH (TTSH), NEA, GIS, STN, DSO, Novartis


- Capture cases (MOH Tan Tock Seng Hospital)
- Prepare patient samples (STN)
- Grow and characterize the virus (DSO, NEA)
- Sequence virus and expression analysis (GIS)
- Find a treatment (Novartis)

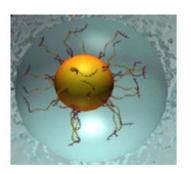
Block access to langerous agents

- Monitor comprehensively
- Detect trafficking
- Detect outbreak
- Use advanced technologies
- Trace to source
- Integrated and coordinated information dissemination

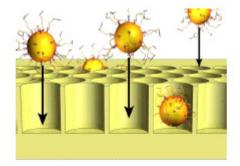
The Fundamental Technology

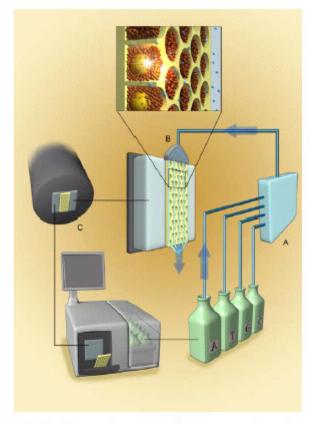


"Sanger" DNA sequencing



Multiplex Sequencing: Mix and Match Technology


PCR'd DNA


1) Prepare Adapter Ligated ssDNA Library

2) Clonal Amplification on 28 μ beads

Load beads and enzymes in PicoTiterPlate™

4) Perform Sequencing by synthesis

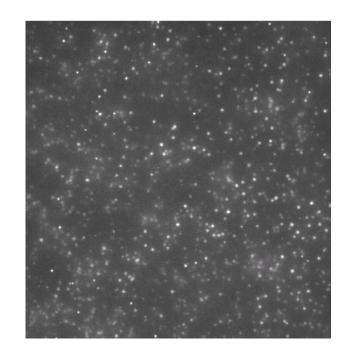
454 SCIENCES

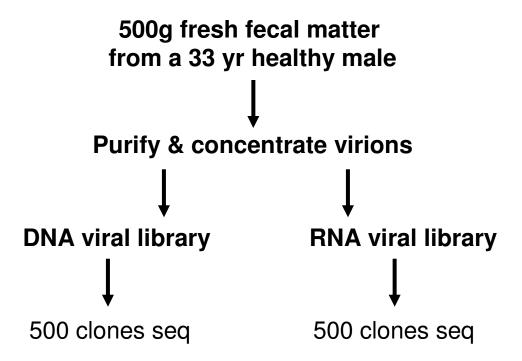
Genome Institute

Sequencing Technologies: Current and Immediate Future Sequencing a bacterial genome (2 Mb)

	"Sanger" <u>ABI 3730</u>	Roche FLX	Solexa 1G	(Projected) ABI SOLiD
Read length (bp)	750	250	30-40	25-50
Multiplexity (reads)	400K	400K	40M	100M
Total throughput (bp)	10M	100M	1-1.6B	2-3B
Time cost per run	8 hr	8 hr	3 days	3 days
Reagent cost per base in pennies	0.1	0.01	0.001	0.0001
Cost sequencing H. influenza genome (2 Mk	\$2,000	\$200	\$ 11	\$ 5
Time per bacterial Genome per machine	1.5 hours	0.2 hours	12 minutes for 10	6 minutes for 10

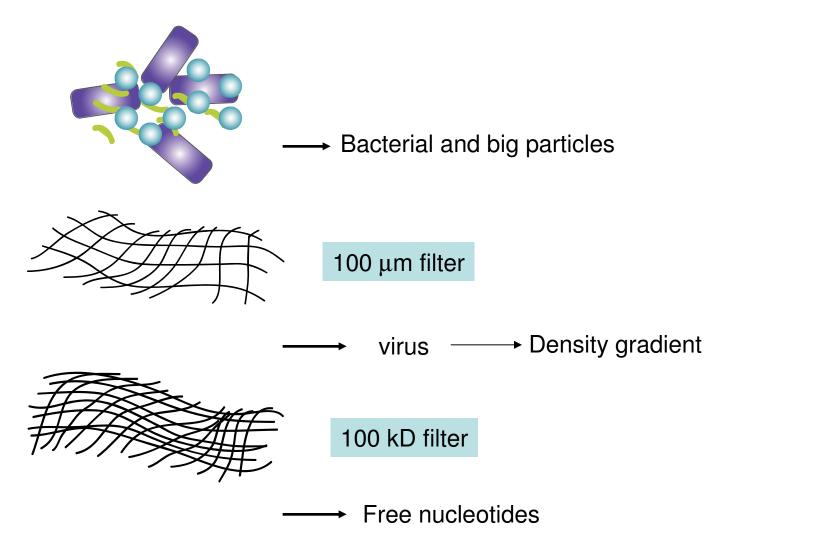
We can now sequence all possible samples of microbes in regional laboratories and develop a forensic database of infectious agents

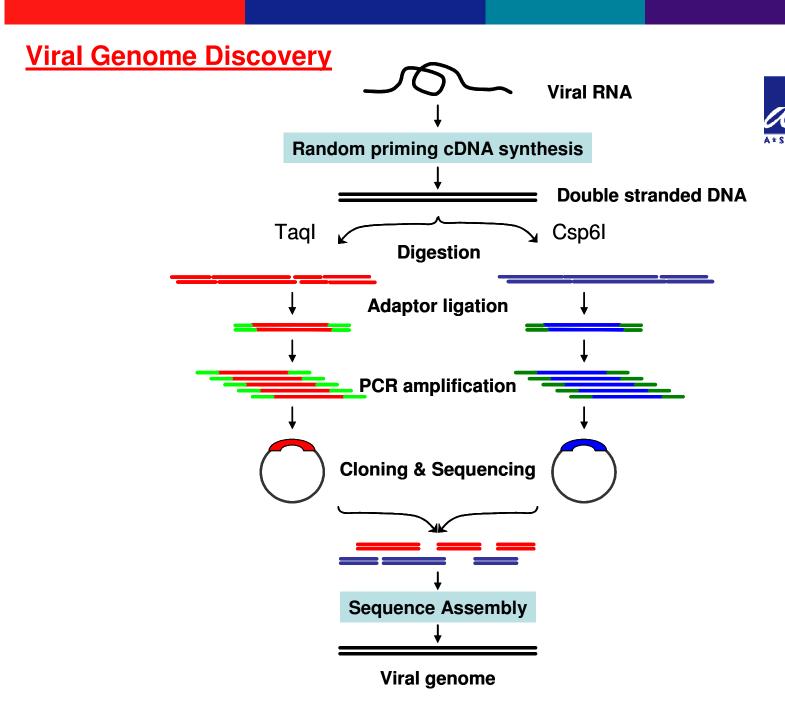

Discovering microbes in the environment


Viral Genome Discovery

A pilot project

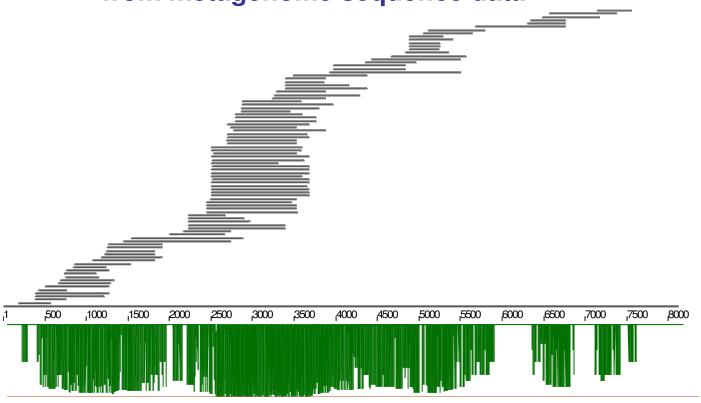
Metagenomic Analyses of an Uncultured Viral Population from Human Feces (a GIS-SDSU collaboration)





Viral Genome Discovery

Isolating viruses from original virus-containing samples



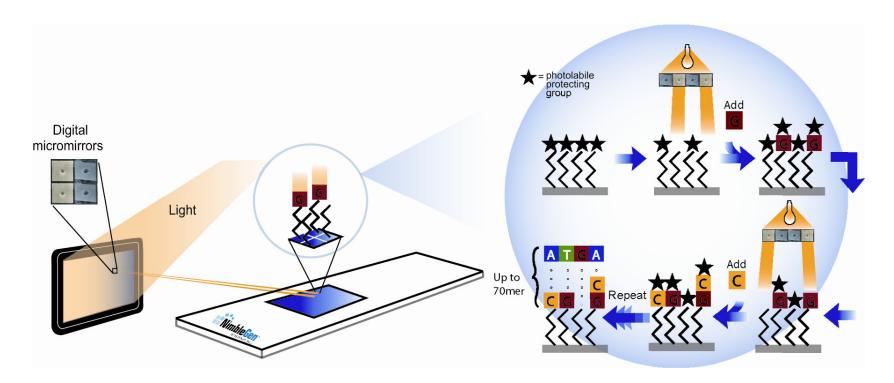
Genome Institute

Viral Genome Discovery

Assemble a whole viral genome from metagenome sequence data

The 300 RNA viral clones aligned to the pepper mild mottle virus genome

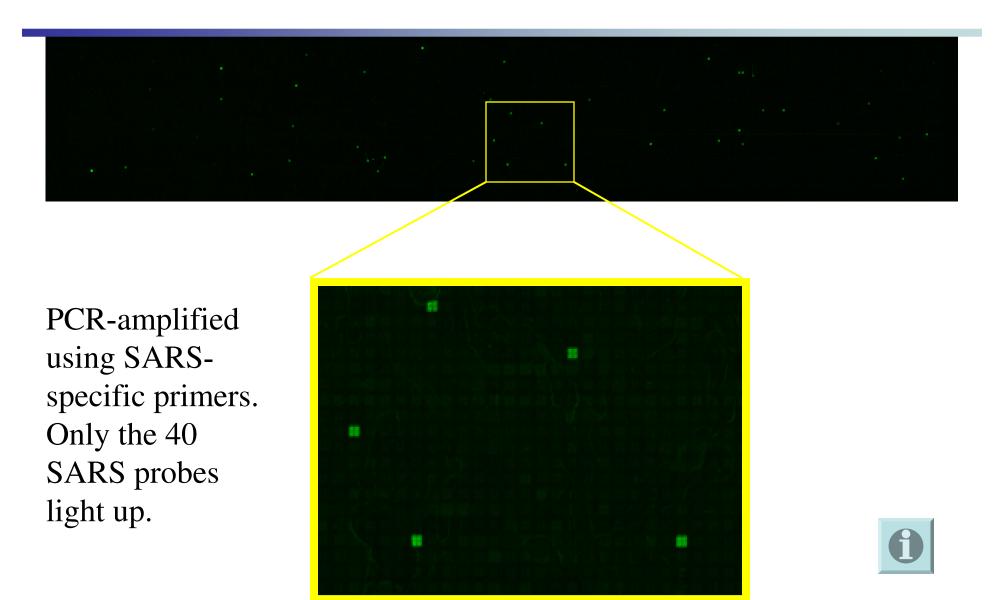
Viral Genome Discovery

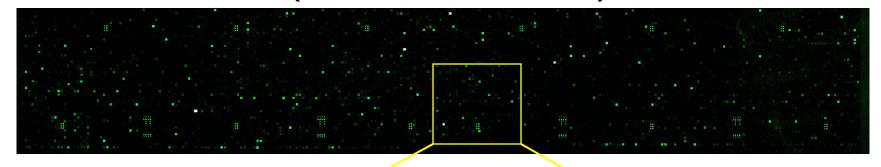

library ID	total clone	k	nown sequ	ence	unknown sequences			
		virus	s-like	non-virus	virus-like	novel		
		plant	animal	non-virus	virus-like			
library 1	10576	9934	27	165	110	340		
library 2	13572	7106	701	3348	269	2148		
library 3	12621	8004	7	4351	11	248		
total	36769	25044	735	7864	390	2736		

How do we then monitor microbes in the environment?

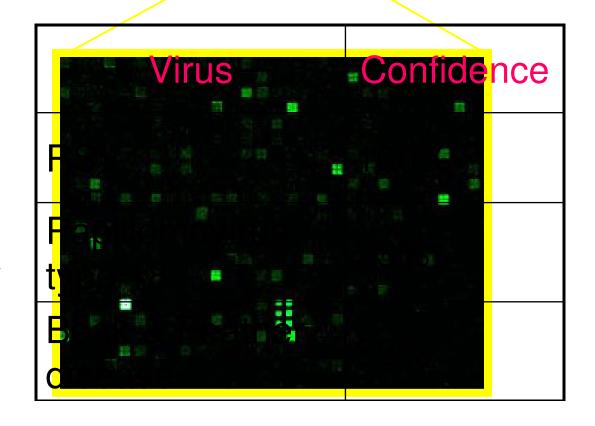
- Detect and identify all animal-infecting viruses.
- Detect and identify selected bacteria (respiratory disease focus).
- Discover novel viruses
- Detect presence of co-infections of multiple pathogens
- Sensitive, accurate diagnosis based on in silico predictions of hybridization footprint

Nimblegen Technology


- ~380,000 probes
- Maskless photolithography


The Pilot Chip

- 10,722 oligos covering 850 viruses
- 204 oligos targeting human control genes (immune response)
- 7-fold replication of all probes


SIN850 SARS cDNA

RSV + mycoplasma cDNA (from ATCC)

PCR-amplified using random primers.
Analysis of signal intensities identify presence of RSV with 100% confidence.

Block access to langerous agents

- Monitor comprehensively
- Detect trafficking
- Detect outbreak
- Use advanced technologies
- Trace to source
- Integrated and coordinated information dissemination

Regional Biosecurity Workshop

May 28, 2007

Edison Liu liue@gis.a-star.edu.sg +65-6478-8007