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A BALLISTIC MISSILE PRIMER 

Steve Fetter 

The Rocket Equation 

 Consider a single-stage rocket with a lift-off mass Mlo and a burn-out mass Mbo. 
In the absence of gravity and air resistance, the change in the rocket's velocity from 
lift-off to burn-out (the "delta-v") is given by 
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where ve is the exhaust velocity of the propellant. If the rocket has n stages, the 
total delta-v of the rocket is given by 
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where vei is the exhaust velocity of the ith stage and (Mlo/Mbo)i is the ratio of the 
rocket mass when the ith stage ignites to its mass when the stage burns out. The 
mass ratio of the ith stage is given by 
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where Mpi
is the propellant mass in the ith stage, si is the fraction of propellant in 

the ith stage that remains unburned, Mti
is the total mass of the jth stage before it is 

ignited, and mp is the mass of the rocket payload. The unburned fraction is very 
low in modern boosters (e.g., s = 0.0012 in the Minuteman-II first stage) and can 
therefore usually be ignored. Thus, if we know the total mass, the propellant mass, 
and the exhaust velocity of each stage, we can estimate the total delta-v (and 
therefore the range) of the rocket for a given payload mass mp. 

 Substituting equation 3 into equation 2, we find that the ratio of the payload 
mass to the total mass of the rocket at liftoff is given by 
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 Unfortunately, this equation cannot be solved for mp as a function of Δvt, 
because the Δvi are functions of mp. An approximation to equation 4 can be useful, 
however, for a quick estimate of the maximum payload capability of a missile. If 
we assume that the ratio of the initial stage mass to the mass of propellant burned 
is a constant f for all n stages [(Mt/Mp)i = f], that the exhaust velocity of all stages 
is equal (vei = ve), and that the total delta-v is equally divided among the stages, 
(Δvi ≈ Δvt/n), then 
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where MT’ is the total mass of the rocket (without the payload). In the limit when 
the number of stages is large, 
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 The rocket is a more efficient method of propulsion than is often assumed.  
Because virtually all of the chemical energy of the propellant is converted into 
kinetic energy of the exhaust, we can write the efficiency as follows: 
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If all of the stages have equal values of ve, then 
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where MP is the total mass of propellant in all the stages. Assuming that fi = f for 
all stages, MT’ = fMP. Solving equation 8 for mp and substituting it into equation 5 
and solving for ε, we have 
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If we assume, very roughly, that Δvt = nve, then  
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For example, if f = 1.1, ε = 0.48, 0.45, and 0.29 for n = 1, 2, and 3, respectively. In 
other words, a short-range, one-stage missile can be almost 50 percent efficient in 
converting the chemical energy of the propellant into kinetic energy of the payload, 
and even a long-range, three-stage missile can be almost 30 percent efficient. 

 The exhaust velocity is usually stated in terms of the specific impulse, or the 
impulse (force x time) produced per unit weight of propellant consumed. The 
specific impulse is related to the exhaust velocity by the equation 

 ve = g Isp (11) 

where g is the acceleration due to gravity at sea level (9.81 m/s2). Note that the 
units of Isp are seconds. The thrust is the exhaust velocity multiplied by the rate at 
which propellant is consumed: 
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If we assume that all the propellant is consumed during the burn time of the 
missile, tbo, then the average thrust is given by 

 T̂ = g Îsp
M p

tbo
 (13) 

 The specific impulse is a characteristic property of the propellant system, 
although its exact value varies to some extent with the operating conditions and 
design of the rocket engine (e.g., the combustion chamber pressure). The 
theoretical specific impulse for a variety of propellants is given in table 1. The 
specific impulse at higher altitudes is somewhat greater (due to the lower 
atmospheric pressure), so the average Isp of a well-designed booster often exceeds 
the theoretical Isp at sea level (especially for upper stages). Values of Mt, Mp, f 
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(Mt/Mp), Î sp , and T̂ for several U.S., Russian, and Chinese ballistic missiles are 
given in table 2. 

Table 1. The theoretical specific impulse at sea level for a variety of 
rocket propellants.a 
Propellantb Examples Isp (s) 
Liquid   
 H2 + O2 Space Shuttle, Saturn 390 
 RP-1 + O2 Thor, Atlas 300 
 NTO + N2H4/UDMH Titan-II 288 
 NTO + UDMH SS-17, SS-18, SS-19 285 
 IRFNA + UDMH DF-3, Scud-B, Lance, Agena 275 
 EtOH + O2 V-2 279 
Solid   
 AP/Al composite Minuteman, MX, Trident 265 
Source: George P. Sutton, Rocket Propulsion Elements (New York: John Wiley & Sons, 1986). 
aAssuming a combustion chamber pressure of 1000 psi, a nozzle exit pressure of 14.7 psi, and an 
optimum nozzle expansion ratio. 
bH2 is liquid hydrogen, O2 is liquid oxygen, RP-1 is kerosene, NTO (nitrogen tetroxide) is N2O4, 
N2H4 is hydrazine, and UDMH (unsymmetrical dimethylhydrazine) is (CH3)2NNH2. IRFNA 
(inhibited red fuming nitric acid) is about 85% nitric acid (HNO3), 13-15% NO2, and 0.5% HF. 
EtOH (ethyl alcohol) is C2H5OH. AP (ammonium perchlorate) is NH4ClO4; a polymer binder 
holds this together with aluminum (Al). 

 Note that the actual burn-out velocity of the rocket will be less than Δvt if forces 
other than thrust, such as gravity and air resistance, act on the rocket during its 
burn. The actual burn-out velocity can be calculated if the characteristics of the 
rocket are known in considerable detail. For most purposes, however, it is 
convenient to assume that the burn-out velocity is simply the total delta-v minus a 
correction for air and gravity that is relatively insensitive to changes in payload: 

 vbo = Δvt – Δvag (14) 

In general, slower-burning rockets have larger values of Δvag, and first stages have 
a higher Δvag than later stages. Table 3 gives approximate values of Δvag for several 
types of missiles. 
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Table 2. Total booster mass Mt, propellant mass Mp, average specific impulse Isp, 
average thrust T, burn time tbo, and burn-out altitude hbo for several ballistic missiles. 
 
Missile 

 
Stage 

Mt 
(kg) 

Mp 
(kg) 

Mt 
Mp 

Isp 
(s) 

T 
(kN) 

tbo 
(s) 

hbo 
(km) 

Minuteman 
IIa 

1 23,230 20,780 1.12 267 899 61 34 

 2 7,270 6,230 1.17 284 266 65 96 
 3 2,010 1,660 1.21 275 76 59  
Minuteman 
III 

3 3,710 3,306 1.12 285 152 61 190 

MXb 1 48,700 44,300 1.10 284 2315 53 22 
 2 27,800 24,900 1.12 304 1365 54 82 
 3 8,200 6,790 1.21 306 329 62 196 
Pershing IIb 1 4,110 3,580 1.15 276 172 58 18 
 2 2,600 2,250 1.16 279 134 46  
Titan IIc 1 116,850 112,720 1.04 288 2170 147  
 2 26,810 24,150 1.11 313 407 182 315 
SS-18d 1 171,000 154,900 1.10 317 5670 85  
 2 38,500 36,000 1.07 337 992 120  
DF-3e 1 65,500 61,400 1.07 241 1020 140 100 
V-2f 1 11,800 8,800 1.34 198 252 68 28 
Scud-Bg 1 4,900 3,700 1.32 240 120 70 30 
aJohn Simpson, Aerojet General, Sacramento, CA, and Larry Hales, Thiokol Chemical Corporation, Brigham City, UT, 
personal communication, 15 July 1991. Stages 1 and 2 of Minuteman III are identical to those of Minuteman II. 
b"Short burn time ICBM characteristics and considerations," (Denver, CO: Martin Marietta, 20 July 1983). 
c"Titan II Space Launch Vehicle: Payload Users Guide," (Denver, CO: Martin Marietta Corporation, August 1986). 
d Rolf Engel, "The SS-18 Weapon System," Military Technology, Vol. 13, No. 3 (March 1989), pp. 112-121.  
eZuwei Huang and Xinmin Ren, "Long March Launch Vehicle Family—Current Status and Future Development," 
Space Technology, vol. 8, no. 4 (1988), pp. 371-375. 
fGregory P. Kennedy, Vengeance Weapon 2: The V-2 Guided Missile (Washington: Smithsonian Press, 1983). 
gSteven Zaloga, "Ballistic Missiles in the Third World: SCUD and Beyond," International Defense Review, Vol. 21 
(November 1988), pp. 1423-1427. 
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Table 3. Approximate values of Δvag for solid 
and liquid stages of long-range missiles. 
 Δvag (km/s) 
Stage Solid-fuel Liquid-fuel 
   1 0.6 1.1 
   2 0.15 0.6 
   3 0.15 --- 
Source: E.H. Sharkey, "The Rocket Performance Computer," 
RM-23003-RC (Santa Monica: The RAND Corporation, 1959). 

 A more precise method of calculating the burn-out velocity is to solve 
numerically the equations of motion of the missile. If the missile's thrust vector is 
aligned with its velocity vector (i.e., gravity is used to turn the missile), the 
equations of motion are: 
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where vx and vy are the components of the velocity vector v in the x and y 
directions, T is the thrust, ρ is the atmospheric density (a function of altitude), A is 
the cross-sectional area of the missile, Cd is the drag coefficient (a function of v), 
M is the missile mass (a function of time, as propellant is consumed and empty 
stages are jettisoned), G is the gravitational constant (6.67×10–20 km3s-2kg-1), Me is 
the mass of the Earth (5.97×1024 kg), and x and y are measured from the center of 
the Earth. The atmospheric density as a function of altitude is given in table 4; 
table 5 gives the drag coefficient of the V-2 missile as a function of velocity. 

 If the rate of propellant use is constant, all of the propellant is consumed during 
the burn, and the empty rocket body is jettisoned after burn-out, the mass is equal 
to 

 M(t) = Mt – Mp(t/tbo) + mp [t ≤ tbo] (16) 

 M(t) = mp [t > tbo] 

where the tbo = g Mp Î sp / T̂ .  This equation is easily generalized to n stages. 
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Table 4. Atmospheric density ρ and scale height H as a function of altitude.a 
Altitude Density Scale Height  Altitude Density Scale Height 

(km) (kg/m3) (km)  (km) (kg/m3) (km) 
0 1.225 10.42  20 0.0889 7.62 
1 1.112 10.30  30 0.0184 7.15 
2 1.007 10.19  40 0.00400 6.99 
3 0.909 10.06  50 0.00103 7.06 
4 0.819 9.95  60 3.10×10-4 7.24 
5 0.736 9.82  80 1.85×10-5 7.20 
6 0.660 9.70  100 5.60×10-7 6.85 
8 0.526 9.46  150 2.08×10-9 7.43 

10 0.414 9.21  200 2.54×10-10 8.97 
15 0.195 8.16  300 1.92×10-11 12.06 

Source: National Oceanic and Atmospheric Administration, “U.S. Standard Atmosphere, 1976” (Washington, 
DC: NOAA, 1976). 
aThis table should be interpolated using the function ρ(z) = ρ(0)exp(–h/H), where H is the scale height 
(interpolated using the values given in the table). 

Table 5. The drag coefficient Cd of the V-2 missile 
as a function of its velocity v. 
Velocity 
(Mach) 

 
Cd 

 Velocity 
(Mach) 

 
Cd 

0.0 0.25  2.5 0.15 
0.5 0.18  3.0 0.14 
1.0 0.28  3.5 0.12 
1.2 0.36  4.0 0.11 
1.5 0.26  5.0 0.10 
2.0 0.17    

Source: Hermann H. Kurzweg, “The Aerodynamic Development of the 
V-2,” in T.H. Benecke and A.W. Quick, eds., History of German Guided 
Missile Development (Brunswick, Germany: Verlag E. Appelans, 1957), 
p. 59, 63. Assumes zero angle of attack; includes jet effects. 

 Finally, the altitude of the missile is given by 

 h x y Re= + !
2 2  (17) 

where Re is the radius of the Earth (about 6370 km). 
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 Equation 15 is solved by integrating numerically from x = 0 and y = Re until z = 
Re, adjusting the initial velocity vector so as to achieve the desired (or maximum) 
range for a given payload mass. 

The Range Equation 

 The range of a missile depends on its velocity, altitude, and angle at burn-out. 
The burn-out velocity vbo required for a given range, altitude, and angle is given 
by1 
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where hbo is the burn-out altitude, φ is equal to rb/Re, where rb is the ballistic range 
of the missile, and θ is the angle of the missile at burn-out with respect to the 
vertical. The maximum range is attained when θ = (φ + π)/4; this is also known as 
a “minimum-energy” trajectory. The burn-out altitude varies from 30 km for short-
range missiles to 200 km to 400 km for ICBMs (see table 2). Table 6 gives vbo for 
several values of rb and hbo. 

Table 6. The burn-out velocity vbo (km/s) as a function of the maximum ballistic 
range rb (km) and burn-out altitude hbo (km). 

rb Burn-out altitude, hbo (km) 
(km) 0 30 100 200 300 400  
500 2.17 2.11 1.97 --- --- ---  

1,000 3.02 2.97 2.85 --- --- ---  
2,000 4.11 4.07 3.98 3.86 --- --- 
3,000 4.87 4.83 4.75 4.64 4.53 4.43 
4,000 5.43 5.40 5.32 5.22 5.12 5.02 
6,000 6.25 6.22 6.15 6.05 5.96 5.86 
8,000 6.81 6.78 6.71 6.61 6.52 6.43 

10,000 7.20 7.17 7.10 7.01 6.92 6.83 
12,000 7.48 7.45 7.39 7.30 7.21 7.12 
14,000 7.68 7.65 7.59 7.50 7.41 7.32 

                                         
1 Paul Zarchan, Tactical and Strategic Missile Guidance (Washington, DC: American Institute of Aeronautics and 
Astronautics, 1990), p. 232. 
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 Note that rb includes only the ballistic portion of the trajectory. To estimate the 
total range r, one must add the downrange distance traveled during the rocket burn: 
r = rb + rbo. As a rough estimate, rbo ≈ hbo tanθ. 

 For ranges less than 500 km, the curvature of the Earth can be neglected and 
equation 18 can be approximated by 
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The maximum range, rmax, occurs when θ = π/4 (45 degrees), in which case 

 ( )v g r hbo bo! "max 2  (20) 

where rmax includes the distance traveled during boost. The maximum height above 
the Earth, or apogee, is given by hmax ≈ (rmax/4). 

 With this background, we can now explore specific missile designs. 

China’s DF-3 Missile 

 The Chinese DF-3 missile is a single-stage liquid-fuel intermediate-range 
ballistic missile (IRBM). The DF-3 booster is also the first stage of the DF-4 
ballistic missile and the CZ-1 space launch vehicle (SLV). Because China is 
marketing space-launch services, it has made information about their SLVs, 
including the CZ-1, available to the public.  

 As noted in table 2, the lift-off thrust of the CZ-1 (and therefore of the DF-3) is 
104 tonnes (te). The average specific impulse of the engine is 241 seconds—
significantly less than the theoretical maximum of 275 s for nitric acid and UDMH 
(see table 1). The mass of the first stage is 65.5 te, of which 61.4 te is propellant. 
With this information we can estimate the payload mass or throwweight of the 
missile as a function of its range. We do this under two assumptions: first, that the 
propellant mass is a constant 61.4 te; and second, that the propellant mass is 
increased or decreased to compensate for changes in the payload mass, so that the 
total mass of the missile remains constant (in this case, 67.5 te). 

Constant Propellant Mass. If the propellant mass is held constant at 61.4 te, then 
the rocket equation gives 
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where Mt, Mp, and mp are the booster, propellant, and payload masses; ve, the 
exhaust velocity of the booster, is equal to gIsp = 2.36 km/s. Solving for mp, we 
have 
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 Table 7 gives the throwweight as a function of the maximum range for hbo = 
100 km, rbo = 125 km, and Δvag = 1.1 km/s. Equation 22 predicts a throwweight of 
about 2 te at a range of 2800 km, which is in excellent agreement with estimates 
appearing in the unclassified literature.2 (Equation 19 gives a burn-out velocity of 
4.61 km/s for a maximum range of 2800 km and a burn-out altitude of 100 km. 

Constant Total Mass. As an alternative, assume that the total mass of the missile 
is held constant at a value MT; in this case the rocket equation gives 
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which can be solved to give 

 ( )m M
v v

v
M Mp T

bo ag

e

t p= !
+"

#
$

%

&
' ! +exp

(  (24) 

The results are shown in table 7, assuming MT = 67.5 te (i.e., a design throwweight 
of 2.0 te) and (Mt – Mp) = 4.1 te.3 

                                         
2 Mark Wade, "The Chinese Ballistic Missile Program," International Defense Review, August 1990, p. 1191, gives 
a throwweight of 2 te at a range of 2800 km; the International Institute of Strategic Studies, The Military Balance: 
1988-1989 (London: IISS, 1988), p. 219, gives a throwweight of 2 te at a range of 2700 km. John Lewis and Xue 
Litai, China Builds the Bomb (Stanford: Stanford University Press, 1988), p. 213, gives a range of 2800 km but no 
throwweight. 
3 Changes in hbo have little effect on mp. For example, increasing or decreasing hbo by 20 km increases or decreases 
mp by 2.2 percent for constant Mp  or 1.9 percent for constant MT. In the more accurate calculations presented below, 
calculated burn-out altitudes for optimum trajectories range from 76 to 112 km for constant Mp, and from 92 to 113 
km for constant MT. 



11 

Table 7. The throwweight of the DF-3 missile as 
a function of the maximum range, for a constant 
propellant mass Mp = 61.4 te; and for a constant 
total missile mass MT = 67.5 te. 

Range Throwweight mp (tonnes) 
(km) Constant Mp Constant MT 
1000 11.3 9.6 
1500 7.0 6.2 
2000 4.4 4.1 
2500 2.9 2.8 
3000 1.8 1.8 
3500 1.0 1.0 
4000 0.4 0.5 
4500 ---- 0.02 

 It should be emphasized that it is not a simple matter to change the throwweight 
significantly, since this will change the center of mass and therefore the 
aerodynamic stability of the missile. Deceases in throwweight (and corresponding 
increases in range) will also lead to higher accelerations and aerodynamic loads 
during boost, and to higher velocities and increased aerodynamic heating during 
reentry. 

 Note that the above analysis, while analytically simple, does not explicitly 
include the effects of gravity and air resistance on the booster during launch. These 
effects were included implicitly through Δvag and hbo. It is instructive to check the 
accuracy of these calculations by solving numerically the equations of motion, 
since dependable design information is available for the DF-3. The results, which 
are given in table 8, are in excellent agreement with those obtained with equations 
22 and 24. 
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Table 8. The maximum range of the DF-3, for a 
constant propellant mass Mp = 61.4 te; and for a 
constant total missile mass MT = 67.5 te. 
Throwweight Maximum Range r (km) 

(te) Constant Mp Constant MT 
0.0 4400 4500 
0.5 3800 3900 
1.0 3400 3400 
2.0 2800 2800 
5.0 1800 1700 

10.0 1000 900 

Israel’s Jericho-II/Shavit Missile 

 Very little is known publicly about the Israeli Jericho II missile. The Shavit 
space launch vehicle (SLV), which has been used to orbit two Israeli satellites, is 
widely believed to be based on the Jericho II. From the orbital characteristics and 
estimated masses of these satellites one can obtain a fairly good idea of the 
throwweight/range capabilities of the Shavit, and therefore of the Jericho II. 

 The first satellite, which was launched on 19 September 1988, was placed in an 
elliptical orbit with a perigee of 250 km, an apogee of 1150 km, and an inclination 
of 148 degrees; the perigee and apogee of the second satellite were 200 km and 
1450 km. (These orbital parameters have been independently verified.)  The 
latitude of the launch site was 32 degrees, and the satellites were launched due 
west over the Mediterranean Sea (to avoid overflying Arab territory).4    

 The velocity needed to put a satellite into orbit is given by5 
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where a, the semi-major axis of the orbit, was 7070 km for the first satellite and 
7200 km for the second satellite, which gives vc = 8.29 km/s and 8.35 km/s, 
respectively. 

                                         
4 Jackson Diehl, "Israel Launches Satellite Into Surveillance Orbit, Washington Post, 4 April 1990, p. A35; Steven 
E. Gray, Lawrence Livermore National Laboratory, personal communication. 
5 Samual Glasstone, Sourcebook on the Space Sciences (Princeton: van Nostrand, 1959). 
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 To get the burn-out velocity of the missile, we must add to vc the component of 
the earth's rotational velocity in the direction of the launch (Δvr), as well an amount 
to compensate for the effects of air resistance and gravity during the rocket burn 
(Δvag); Δvr is given by 

 ! " #v
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2
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cos cos  (26) 

where Φ is the latitude (32 degrees), Ω is the orbital inclination, and 86164 is the 
number of seconds per sidereal day. Using the orbital inclination for the first 
satellite (148 degrees), we have Δvr = 0.33 km/s. 

 The Shavit probably has three stages; videotapes of the launches reveal that at 
least the first stage is solid-fueled. A rough estimate of the Shavit's capbilities can 
be obtained by assuming that each stage provides the same increase in missile 
velocity; under these conditions, the mass of the satellite payload would be given 
by solving equation 5 for the payload mass: 
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where MT is the mass of the missile (excluding the mass of the payload), f is the 
ratio of the total mass of each stage to the propellant mass, ve is the exhaust 
velocity of each stage.  

 If the same rocket were used as a ballistic missile, the payload mass for a given 
burn-out velocity vbo would be given by  
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The ratio of the ballistic-missile payload mass to the satellite payload mass is 
therefore given by  
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All that remains is to substitute values for f, ve, and Δvag into equation 24, along 
with the estimates of vc and Δvr derived above. For a large, solid-fuel rocket, 
typical values are f = 1.15, ve = 2.6 km/s, and Δvag = 1.0 km/s.6 

 The satellite mass given by Israeli was 156 kg for the first satellite and 170 kg 
for the second satellite; including a guidance and control package would bring the 
total satellite payload mass to at least 200 kg. Assuming that ms = 200 kg, the 
throwweight predicted by equation 24 is given in table 9 as a function of the 
maximum range of the missile, assuming a burn-out altitude and range of 200 and 
450 km, respectively. Some analysts have speculated that the Jericho II is simply is 
the first two stages of the Shavit SLV; table 9 also gives the throwweight of the 
first two stages of a three-stage Shavit.  

Table 9. The throwweight of the Shavit SLV as 
a function of the maximum range, and the 
throwweight of the first two stages. 

Range Throwweight mp (tonnes) 
(km) First 2 stages All 3 stages 
1000 8.3 11.7 
1500 5.2 6.9 
2000 3.7 4.8 
3000 2.2 2.7 
4000 1.4 2.0 
5000 1.0 1.5 
6000 0.8 1.2 
8000 0.5 0.8 
10000 0.3 0.6 

 Another—and better—way to estimate the capability of the Israeli missile is to 
compare it to a missile of similar size whose details are well known, scaling the 
mass up or down to achieve the orbital capability demonstrated by the Shavit. The 
total missile mass given by equation 22 is 33 te, which is about the same as the 
U.S. Minuteman-II missile (32.5 te). Both missiles use solid propellants, and it is 
reasonable to assume that Israel could achieve the same level of performance as 
that of the 1960s-vintage Minuteman II. 

                                         
6 See table 2. Also see Glasstone, Sourcebook on the Space Sciences, and Sharkey, "The Rocket Performance 
Computer." 



15 

 Using equations 2 and 3 and the missile parameters given in table 2, one finds 
that the Minuteman II could deliver a 700-kg payload to a range of 10,000 km, 
which is in good agreement with the 800-kg throwweight declared by the United 
States under the START Treaty.7 Using the same assumptions, the Minuteman-II 
missile would be capable of launching a 160-kg satellite into the same orbit as the 
first Israeli satellite. Thus, the Shavit and the Minuteman II are missiles of similar 
capability. (The Minuteman III, with its more advanced third stage, is capable of 
launching 300-kg satellite into the same orbit.) 

 Table 10 gives the throwweight of the Minuteman II as a function of the 
maximum range, assuming constant propellant mass. The throwweight of the 
Shavit, if used as a ballistic missile, should be similar. Table 10 also gives the 
throwweight of the first two stages of the Minuteman II; if the Jericho II is indeed 
the first two stages of the Shavit, then the throwweight of the first two Minuteman 
stages should be comparable to that of the Jericho II. Despite the simplicity of the 
earlier estimates based on equation 24, the correspondence between tables 9 and 10 
is remarkably good. 

 It is interesting to compare the throwweight of the first two stages of the 
Minuteman II with that of the DF-3. At a range of 1700 km both missiles have 
roughly equal throwweights (about 5 te). At longer ranges, however, the two-stage 
missile has the advantage: although the DF-3 is limited to ranges of less than 4000 
km, the first two stages of the Minuteman could deliver a 200-kg payload at 
intercontinental ranges. This clearly demonstrates the importance of multi-stage 
rocket technology for long-range delivery. 

                                         
7 “Memorandum of Understanding on the Establishment of the Data Base Relating to the Treaty Between the United 
States of America and the Union of Soviet Socialist Republics on the Reduction and Limitation of Strategic 
Offensive Arms,” dated 1 September 1990, gives a throwweight of 800 kg for the Minuteman II. According to the 
Treaty, this may be the greatest throwweight demonstrated in flight tests (excluding the first seven tests, unless the 
throwweight in one of the these tests exceeds by more than 20 percent the throwweight in subsequent tests), or the 
throwweight at 11,000 km, whichever is greater. Using the equations presented here, Minuteman II would have a 
throwweight of 800 kg at a range of 9,000 km. 
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Table 10. The throwweight of the Minuteman II 
missile as a function of the maximum range, and 
the throwweight of the first two stages. 

Range Throwweight mp (tonnes) 
(km) First 2 stages All 3 stages 
1000 8.4 12.9 
1500 5.5 7.6 
2000 3.9 5.3 
3000 2.4 3.2 
4000 1.6 2.2 
5000 1.1 1.7 
6000 0.8 1.3 
8000 0.4 0.9 
10000 0.2 0.7 

   

The Soviet Scud-B Missile 

 The Scud-B is a single-stage, liquid-fuel, short-range ballistic missile based on 
German V-2 rocket technology. Like the Chinese DF-3 (which itself is based on 
early Soviet technology), the propellants are UDMH and IRFNA, so we may 
assume about the same exhaust velocity (2.4 km/s) as the DF-3. The missile is 
widely attributed with a throwweight of 1 te at a maximum range of 300 km.8 
Zaloga gives a total missile mass of 5.9 te and a propellant mass of 3.7 te;9 
assuming a 1.0-te payload, the ratio of total booster mass to propellant mass f 
would be 1.32. Although this ratio is large by modern standards, the V-2 missile 
had about the same ratio.10 We can also assume that the Scud has about the same 
burn-out altitude as the V-2 (28 km) and the same Δvag (about 0.7 km/s).  

 With these booster characteristics we can use equations 17 and 19 to estimate 
the Scud’s throwweight at a given range. Very similar results are obtained if we 
assume that the Scud has the same initial thrust-to-weight ratio as the V-2 (i.e., a 
thrust of 12 te) and use equation 10 to estimate the maximum range for a given 

                                         
8 Steven Zaloga, "Ballistic Missiles in the Third World: SCUD and Beyond," International Defense Review, 
November 1988, pp. 1423-1427; Thomas B. Cochran, William M. Arkin, Robert S. Norris, and Jeffrey I. Sands, 
Nuclear Weapons Databook, Vol. IV: Soviet Nuclear Weapons (New York: Ballinger, 1989), p. 220-222. 
9 Zaloga, "Ballistic Missiles," p. 1427. 
10 Gregory P. Kennedy, Vengeance Weapon 2: The V-2 Guided Missile (Washington DC: Smithsonian Institution 
Press, 1983), p. 84. 
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payload; these results appear in table 11. The assumptions about the missile’s 
characteristics appear to be accurate, inasmuch as the throwweight is predicted to 
be 1.0 te at 300 km. 

 Iraq claimed that by reducing the throwweight they were able to extend the 
Scud’s range to 650 km; table 11 shows that the throwweight at this range would 
be only one-eighth of its throwweight at 300 km if the propellant mass remained 
constant. If, on the other hand, propellant is added to compensate for the reduced 
payload mass (i.e., a constant total missile mass of 5.9 te), then the throwweight 
would be about 300 kg at a range of 650 km. Since Iran claimed that the modified 
Scud (dubbed the “al Hussein” by Iraq) carried a warhead weighing 160 to 180 kg, 
constant propellant mass is the best assumption.11 Iraq fired nearly 200 al Husseins 
against Iranian cities; many were launched at Teheran, which was over 500 km 
from the nearest Iraqi launch sites. A throwweight of 200 kg is consistent with 
available estimates of the damage caused by these attacks.12   

 It was widely reported that Iraq had further extended the range of the Scud-B by 
lengthening the missile to carry additional propellant; apparently two al Abbas 
missiles were made from three cannibalized Scuds. This can result in a increase in 
throwweight much greater than 50 percent, since the mass of the engines and tail 
section stay the same—only the mass of the fuel tanks must increase. In the V-2, 
for example, the fuel tanks account for only one-quarter of the mass of the empty 
booster. If we assume the same fraction for the Scud-B, and further assume that the 
al Abbas modification results in a 50% increase in the fuel-tank and propellant 
mass only, then f = 1.25 for the modified missile. The throwweight as a function of 
range under these assumptions is given in table 11. Note that the al Abbas could 
deliver a 1-te payload to a range of 440 km, and that its throwweight at 900 km 
would equal that of the Scud-B at only 650 km (assuming a constant propellant 
mass). These estimates are consistent with reports that the al Abbas had a range of 
up to 900 km, and that it could deliver the normal 1.0-te Scud warhead to ranges 
significantly greater than the al Hussein missile could.13 

                                         
11 W. Seth Carus and Joseph S. Bermudez, Jr, "Iraq's Al-Husayn Missile Programme," Jane's Soviet Intelligence 
Review, May 1990, pp. 205, states that Iran claims that the al Hussein missile had a payload containing 190 kg of 
explosives and a maximum range of 600 km. They also state that the fuel tanks were lengthened and 1040 kg of 
additional propellant added to the missile, but this clearly would not be necessary to achieve such a small 
throwweight at this range. 
12 See appendix B [NEED NEW FOOTNOTE HERE]. 
13 See Aaron Karp, "Ballistic Missile Proliferation," p. 386; Zagola, "Ballistic Missiles," p. 1425. 
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Table 11. The range of the Scud-B and al Abbas missiles as a function 
of throwweight, for constant propellant mass (3.7 te for Scud, 5.55 te for 
al Abbas); and constant missile mass (5.9 te for Scud, 7.9 te for al 
Abbas). 
 Maximum Range r (km) 
Throwweight      Scud-B / al Hussein                     al Abbas                

(tonnes) Constant Mp Constant MT Constant Mp Constant MT 
0.0 730 980 1000 1150 
0.125 640 840 890 1010 
0.25 560 720 800 890 
0.5 450 530 640 700 
1.0 300 300 440 440 

 

Missile Ranges in Perspective 

  To put these and other ranges given in this appendix in perspective, table 12 
gives the minimum range between several countries that possess ballistic missiles 
and major cities in the Middle East region. Note that every city listed (and many 
major cities not listed) is within IRBM range of every emerging missile-capable 
country. For example, every city is within the range of the DF-3 missile (2,800 km) 
from Saudi Arabia and Iraq, and every city but Tripoli is within DF-3 range of 
Iran. The Middle East is a small neighborhood; even missiles with ranges of 1,000 
km or less can strike many potential adversaries. 
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Table 12. Minimum range (km) from several countries with ballistic missile 
programs to major cities in the region. 
 Missile Launched From 
 
Target City 

 
Egypt 

 
India 

 
Iran 

 
Iraq 

 
Israel 

Saudi 
Arabia 

Cairo, Egypt —— 3600 1400 800 300 400 
Delhi, India 4100 —— 1400 2800 4000 2300 
Teheran, Iran 1600 1900 —— 400 1400 800 
Baghdad, Iraq 1000 2400 120 —— 800 300 
Tel Aviv, Israel 100 3300 1000 400 —— 250 
Tripoli, Libya 1200 5400 3100 2500 2100 2200 
Karachi, Pakistan 3100 170 600 1900 3100 1200 
Riyadh, Saudi 
Arabia 

1100 2200 400 500 1300 —— 

Damascus, Syria 300 3100 800 230 60 240 
Ankara, Turkey 900 3500 900 800 800 1000 
Baku, Azerb. 1600 2200 170 600 1400 1200 
Sanaa, Yemem 800 2700 1000 1000 1300 200 
       

Cost-effectiveness of Missiles vs. Aircraft 

  Why use missiles instead of aircraft?  After all, aircraft are reusable, they are 
capable of much better accuracy than first-generation missiles, and it is much 
simpler to deliver many payloads (e.g. chemical agents) with aircraft than missiles. 
The usual answer is that the higher velocity of missiles gives them a much better 
chance of penetrating to their targets. Moreover, missiles do not require highly 
skilled pilots and better control can be maintained over missiles than aircraft 
(missiles cannot defect). A detailed answer must take into account the relative 
costs of missiles and aircraft for a given payload and range, as well as the relative 
probability that they will penetrate to their targets.  

  Table 13 gives the mass and unit flyaway cost of several U.S. solid-fuel ballistic 
missiles in 1986 dollars. Note that the price per kilogram varies by only a factor of 
four, even though the missile mass varies by a factor 70. The average cost is about 
$200/kg, plus or minus a factor of two. If we apply this cost per unit mass to the 
liquid-fuel Scud and DF-3 (admittedly a questionable procedure), we find that they 
cost roughly $1 million and $10 million each, respectively.  
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Table 13. The mass (in tonnes) and unit flyaway cost (in million FY 1986 dollars) 
of several U.S. ballistic missiles. 
 
Missile 

Mass 
(te) 

Unit Flyaway Cost 
(million FY 1986$) 

Cost/Mass 
($/kg) 

Minuteman III 35 7.8 220 
MX/Peacekeeper 88 22 250 
Poseidon C3 29 5.0 170 
Trident C4 30 8.1 270 
Trident D5 57 28 490 
Lance 1.3 0.16 120 
Pershing II 7.4 2.5 340 
Source: Thomas B. Cochran, William M. Arkin, and Milton M. Hoenig, Nuclear Weapons Databook, Vol. I: U.S. 
Nuclear Forces and Capabilities (Cambridge, MA: Ballinger, 1984). 

  For comparison, table 14 gives the mass, payload, combat radius, and unit 
flyaway cost of several U.S. aircraft. Once again, the flyaway cost per unit takeoff 
mass varies by only a factor of four from the least expensive aircraft (A-7) to the 
most expensive (B-2). The average cost for fighter and attack aircraft is roughly 
$700 per kilogram of takeoff mass.  

  Referring to table 14, the U.S. A-7 aircraft has a maximum payload of 5.9 te, a 
combat radius of 880 km, and a unit flyaway cost of $8.5 million dollars. To 
deliver an equal payload at a range of only 300 km would require at six Scud-B 
missiles at a cost of roughly $6 million dollars. Given the unreliability and 
inaccuracy of ballistic missiles, an A-7 would only have to complete an average of 
one mission (an attrition rate of 50%) to be cost effective compared the Scud, other 
considerations aside.  

  As another example, consider the comparison between the U.S. A-6 and the 
Chinese DF-3 missile. Both delivery systems have (or could have) roughly equal 
payload/range capabilities; the A-6 costs about $19 million, while the DF-3 costs 
about $10 million. Once again, attrition rates must be very high to make the DF-3 a 
cost-effective alternative. Since most air defenses cannot impose such high attrition 
rates, the popularity of ballistic missiles must be explained by other factors, such as 
speed, political control, prestige, or psychological impact.  
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Table 14. The maximum takeoff weight, payload, combat radius, and unit flyaway 
cost in 1986 dollars of several U.S. aircraft. 
 
Aircraft 

Takeoff Mass 
(te) 

Payload 
(te) 

Combat 
Radius 
(km) 

Flyaway Cost 
(million 
1986$) 

Cost/Mass 
($/kg) 

A-4 11.6 4.5 1250 7.7 660 
A-6 27.4 8.2 1250 19 690 
A-7 19 5.9 880 8.5 450 
F-15 31 7.3 1350 22 710 
F-16 15 5.4 930 13 870 
F-18 20 7.7 850 24 1200 
B-1 217 29 4600 228 1000 
B-2 168 23 5000 274 1600 
Source: Thomas B. Cochran, William M. Arkin, and Milton M. Hoenig, Nuclear Weapons Databook, Vol. I: U.S. 
Nuclear Forces and Capabilities (Cambridge, MA: Ballinger, 1984), and International Institute for Strategic Studies, 
The Military Balance 1988-1989 (London: IISS, 1988). 

 


